Three-Dimensional Numerical Modeling of Acoustic Trapping in Glass Capillaries

نویسندگان

  • Mikkel W. H. Ley
  • Henrik Bruus
چکیده

Acoustic traps are used to capture and handle suspended microparticles and cells in microfluidic applications. A particular simple and much-used acoustic trap consists of a commercially available, millimeter-sized, liquid-filled glass capillary actuated by a piezoelectric transducer. Here, we present a three-dimensional numerical model of the acoustic pressure field in the liquid coupled to the displacement field of the glass wall, taking into account mixed standing and traveling waves as well as absorption. The model predicts resonance modes well suited for acoustic trapping, their frequencies and quality factors, the magnitude of the acoustic radiation force on a single test particle as a function of position, and the resulting acoustic retention force of the trap. We show that the model predictions are in agreement with published experimental results, and we discuss how improved and more stable acoustic trapping modes might be obtained using the model as a design tool.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acoustic Trapping of Bacteria and Nanoparticles in Disposable Glass Capillaries Using Seed Particles

This paper describes a novel method for acoustic trapping of submicron particles in glass capillaries using secondary acoustic forces. By using preloaded larger particles (seed particles) to initiate clustering, trapping of submicron particles is greatly improved and can be accomplished at lower concentrations. As a potential application for this new method we demonstrate capture and enrichment...

متن کامل

A High Order Approximation of the Two Dimensional Acoustic Wave Equation with Discontinuous Coefficients

This paper concerns with the modeling and construction of a fifth order method for two dimensional acoustic wave equation in heterogenous media. The method is based on a standard discretization of the problem on smooth regions and a nonstandard method for nonsmooth regions. The construction of the nonstandard method is based on the special treatment of the interface using suitable jump conditio...

متن کامل

Frequency tracking in acoustic trapping for improved performance stability and system surveillance.

This work proposes and demonstrates an acoustic trapping system where the trapping frequency is automatically determined and can be used to analyse changes in the acoustic trap. Critical for the functionality of this system is the use of a kerfed transducer that removes spurious resonances. This makes it possible to determine the optimal trapping frequency by analysing electrical impedance. It ...

متن کامل

Developing 3 dimensional model for estimation of acoustic power in urban pathways in geo-spatial information system framework

Around the word, traffic growth is causing growing air and noise pollution. Noise levels in a given area are affected by traffic on the streets as well as effective factors, including existing infrastructure and industrial centers, and so on. The purpose of this research is to model and estimate the amount of acoustic emission in the streets of Tehran's third district, using the 3D spatial info...

متن کامل

Three Dimensional Transient Numerical Modeling of Temperature Distribution and Output Power in Photovoltaic Module

According to the effect of temperature on the output power of a photovoltaic module, this research tries to calculate the temperature distribution in a photovoltaic module by numerical solving of the energy balance equations. Therefore, its output power can be accurately predicted. For this purpose, several photovoltaic modules are modeled in detail in the COMSOL software. A new method for calc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017